

Florida Solar Energy Center • November 1-4, 2005

Innovative Design of a Compact Reformer for PEMFC

Chang-Won Park
Department of Chemical Engineering
University of Florida

Start Date = January 4, 2005 Planned Completion = February 28, 2006

Florida Solar Energy Center • November 1-4, 2005

Research Goals and Objectives

Objective:

Development of a micro-reformer for mobile PEMFCs

Approach:

- Modular reformer design:
 - Base unit for 10W power (0.3 mol-H₂/hr)
 - Volume of the base unit smaller than 100 cm³.
- Combination of exothermic catalytic partial oxidation (CPOX) and endothermic stream reforming reactions to eliminate the need for an external energy source
- Single-pass tubular reactor with a catalyst on granular support for higher efficiency.

Florida Solar Energy Center • November 1-4, 2005

Relevance to Current State-of-the-Art

- Mobile PEMFC applications require an integrated reformer due to the difficulty of making a hydrogen storage system portable.
- New design by the current research offers
 - Improved catalyst incorporation for better efficiency
 - Improved temperature control
 - Improved stacking of modular units

Relevance to NASA

Compact reformer for aviation applications

Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule and Deliverables

- Total budget: \$35,000
- Schedule & Deliverables:
 - 1st Quarter: Design of a new reformer meeting the criteria
 - 2nd Quarter: Simulation of a gaseous flow through the reformer
 - 3rd Quarter: Experiment with a glass bead packing
 - 4th Quarter: Experiment with a granular catalyst

Deliverable: Compact, modular reformer

Florida Solar Energy Center • November 1-4, 2005

Anticipated Technology End Use

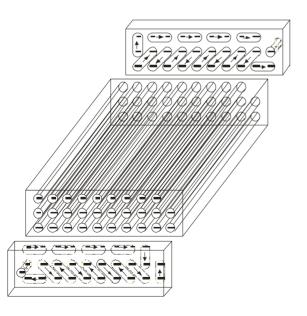
A compact reformer developed by this project should be applicable to a broad range of sizes from a very small micro-reformer for laptops or cell phones to a much larger yet compact one for aviation and automobiles.

Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

Accomplishments:

- Simulation of a gaseous flow through a packed tube to determine the structure and the dimension of a compact reformer
- Design of a new reformer
- Experiment using 200 μm glass bead as a packing material
- Provisional US Patent (Serial No. 60/722,469)

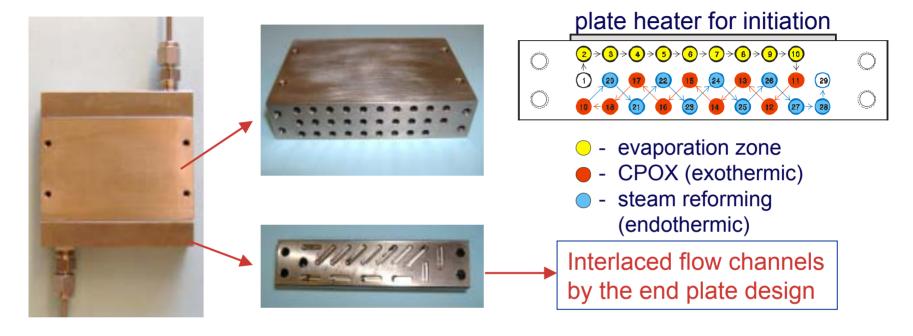


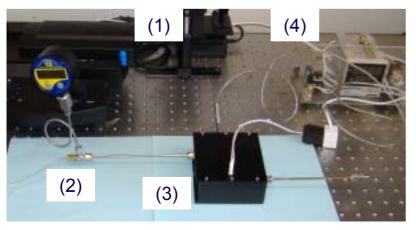
Florida Solar Energy Center • November 1-4, 2005

Results:

- Simulation results suggested that the reaction channel diameter of 2.5mm and 200μm catalyst particles would meet the design criteria. (*Feb 05 Report*)
- New reformer design: (July 05 Report)

Features:

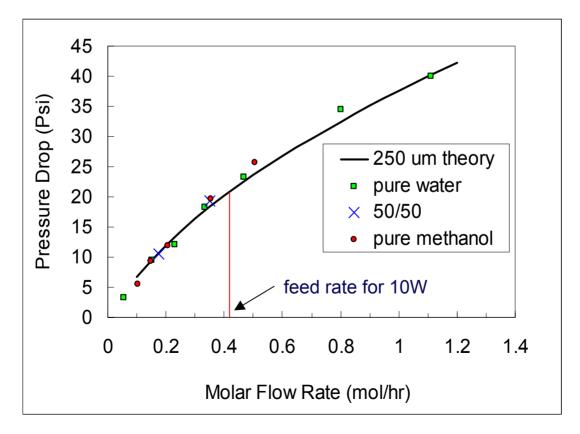

- $-76 \times 76 \times 18 \text{ mm} (\sim 104 \text{ cm}^3)$
- Interlacing of the exothermic reaction zone with the endothermic reaction zone by the end plate design



Florida Solar Energy Center • November 1-4, 2005

Overall setup:

- 1. Syringe pump for feed
- 2. Pressure gauge
- 3. Insulated reformer
- 4. Temperature controller



Florida Solar Energy Center • November 1-4, 2005

Results: Theoretical calculation vs. measurement

- **Theory:** Ergun equation with quasi-steady approximation

- **Experiment:** methanol, water, 50/50 mixture of the two

Florida Solar Energy Center • November 1-4, 2005

Future Plans

Experiment with catalyst:

- CuO/ZnO catalyst (MDC-3 of Süd-Chemie) 42% CuO, 47% ZnO, 10% Al₂O₃ (3.2mm cylindrical pellet)
- Granulate into 200 μm particles using a ball mill and sieves
- Monitor heat generation and analyze gas output